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Equations for determining the density, pressure and temperature at the stagnation point of steady supersonic flow around a body 
are obtained from the o~nservation laws on the leading shock wave front and the Bernoulli integral behind the front. Different 
relations defining the medium are used: in the form of the Mie--Grfmeisen equation (soils and metals) and the "Fate equation 
(fluids). An upper and lower estimate of the head drag is given on the basis of an hypothesis that the contact pressure field is 
equalized as the flow velocity increases, which is substantiated by well-known calculations. The results of calculations for two 
types of sands, clay and water are presented. The corrections, when aocount is taken of heat conduction, viscosity and plasticity, 
are found, 

Certain geological media are distinguished by comparatively low values of the velocity of sound (several 
hundreds of metres in sands, loesses and tim). Hence, supersonic conditions for the motion of a research 
probe, and the need associated with this to estimate the pressure and temperature, can arise, for example, 
when investigating the physicomechanical properties of such structures on the surfaces of planets by 
dynamic penetration experiments. 

It has been shown, when processing experimental data [1], that the hydrodynamic part of the drag 
force accompanying the subsonic motion of a body in a solid medium is described like that in a fluid 
of corresponding density. The forces which depend on solidity stabilize and become small at transonic 
velocities. A similar conclusion can be drawn from an asymptotic analysis of the problem of the elasto- 
plastic flow around slender bodies [2]. Simplified models of the supersonic motions of minimal drag 
bodies [3, 4], based on the well-known Lavrent'yev hypothesis concerning the similarity of the stress 
and velocity fields in a fluid and in a solid medium, contain a priori ideas regarding the effect of the 
compressibility of the medium and require calibration. Furthermore, from the point of view of the 
strength of the body around which the flow occurs, it is important to know the maximum pressure and 
temperature on its surface. The determination of these quantities is the principal aim of this paper. 

Without recourse to the solution of the complex problem of the flow of a dense medium around a 
rigid body as a whole, comparatively simple equations and quadratures are obtained by analytic methods 
for calculating the pressure, density and temperature on the leading wave front and at the stagnation 
point of a flow. The medium is described by the Mie-Griineisen equation of state and the linear law 
that the velocity of the wave is the velocity of the particles behind the from [5-10] or by the Tare equation 
[11]. The accuracy of the approximation corresponds to the actual accuracy of the experimental data 
with respect to the shock wave adiabatic curves and the thermodynamic parameters. Calculations were 
carried out for geological media (sands, clay and water) over a range of flow velocities from 0.5 to 4 
km/s and pressures of up to -10  GPa, that is, until the striker, made of high tensile materials, is obviously 
destroyed. As it turned out, the pressure increment outside the shock wave front predominates over 
the amplitude increment of this shock wave at low Math numbers (M = 2), but, when 2 < M < 4, the 
orders of both increments are the same. The temperature surges were found to be small compared with 
the melting points of refractory alloys and, obviously, due to the short duration of the process only have 
a small effect on the strength of the striker. It is important that the quantities found should be stable 
with respect to variations in the parameters of the medium. For instance, the pressure coefficients at 
a velocity of less than 3 km/s do not exceed a value of 1.4 in all cases. Estimates of the drag as well as 
estimates of the effect of viscosity, heat conduction and plasticity, that is, of factors which are not taken 
into account in the main context, are put forward. There are no experimental data for the velocity range 
indicated above, and a numerical experiment has only been carried out for water [12-14]. Similar 
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elements are contained in the theoretical papers [15, 16]. For instance, the most important of these in 
[16] is the assumption of the cavitational nature of the flow. Problems of thermodynamics are, however, 
not touched upon in [15, 16]. Hence, the results obtained in the present paper, while incomplete, provide 
new and important information concerning the characteristics of the flow and can be used for checking 
numerical algorithms. 

Generally speaking, the possibility of cavitating flow follows immediately from Lavrent'yev's well- 
known hypothesis concerning the similarity of the characteristics of high-velocity flow in a fluid and in 
a solid medium. Specifically, cavitating flow around a body in a solid medium was apparently mentioned 
for the first time in a presentation of classified papers by English investigators during the war years 
[17] and, also, in [1, 3, 4]. 

1. PHYSICAL PREMISES 

We consider the steady boundless supersonic flow of a condensed, inviseid and non-heat-conducting 
medium around an axially symmetric, blunt and absolutely rigid body. Flow separation conditions are 
studied. For simplicity, we shall assume that the separation line is specified by the configuration of the 
contour around which the flow occurs with a break (disk, segment, paraboloid, etc.). In view of the high 
pressure level, we neglect rigidity effects. 

Under steady supersonic flow conditions M = U_/Do > 1, where U_ and Do are the velocities of the 
free stream and the weak shock wave in the medium, respectively, a strong frontal shock waveA~4A" 
(Fig. 1) is formed. The flow is unperturbed ahead of the front of this wave: 

U = U_, P = 0, T = T_, V = V_, E = 0 (1.1) 

where U is the mass velocity, P is the pressure, Tis the temperature, and Vand E are the specific volume 
and the specific internal energy. The parameters change abruptly on crossing the front (the corresponding 
values will be marked by a subscript plus) and continuously behind the front. (The values at the stagnation 
point B will be marked by an asterisk.) In order to describe the state of the solid, we adopt the well- 
known Mie-Griineisen equation and the Tate equation in the case of water. 

In a porous medium and for a comparatively small shock-wave amplitude, there is an irreversible 
bulk deformation of the medium in the case of loading behind the front, and, consequently, the assump- 
tion of isentropicity, which considerably simplifies the analysis, loses its meaning. In this ease and in 
the absence of the requisite experimental data concerning the mechanical behaviour of a porous medium 
under high pressure and high temperature, we shall give an upper and a lower estimate of the required 
quantities, starting from. the assumption that the loading process is either adiabatic or isentropic. 

It can be shown that, at least at moderate values of the Math number, the shock wave is located 
from the nose part of the body (compared with its transverse dimension). This means that the transition 
A ~ B occurs with a considerable variation in the required functions and cannot be approximated using 
the simplest schemes (Newton's method, for example). Hence, we relate the states at the point of 
symmetry on the wave front A and at the stagnation point B using the Bernoulli integral for a 
compressible fluid subject to the condition for stagnation of the flow U, = 0 

A' 

A" J 

Fig. 1. 
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P . U . - P + v - U 2 + + V _ I ~ ( O ) d O = O ,  0 = i  V (1.2) 
2 e, '  I/_ 

Certain constraints, associated with the applicability of integral (1.2) are discussed in Section 7. We 
also write down tbe general conservation laws in the shock wave taking account of (1.1) 

P+ = U_(U. -  U+)/V_ = U, (U_-  U,)IV,. E, = P,(V_-  V,)I2 (1.3) 

When M ~< 1, there is no shock wave (pointA is removed to infinity upstream when M ~ 1 + 0) and 
the Bernoulli integTal then relates the states at point B and at infinity. 

Equalities (1.1)-~1.3) are then dosed by a governing relation of the form E = E(P,  V). 

2. THE M I E - G R O N E I S E N  EQUATION 

In order to describe the state of solids in the high-pressure and high-temperature region we adopt 
an equation in the form of the Mie--Griineisen equation using the shock adiabatic curve Pn = PH(0, 
II_) and the relation for determining the Griineisen parameter [5] 

r/v = ray0 = r/v_ (2.1) 

where V0 and F0 axe the values of the parameters of the continuous phase under normal conditions 
and F_ is the effective value which is identical to the value of F0 if V0 = II_ (there is no porosity). The 
equation then takes the form 

E = E~O,  V_) + V_(P - Pn)/F_, Eu(0, V_) = OV_P~0, V..)/2 (2.2) 

On additionally invoking the thermodynamic equality Ps -- -(dE~die)s, as is customary, we initially 
obtain the ordinary differential equation for the isentropic lines and, then, its solution with the initial 
condition of starting from the shock adiabatic curve 

P, = Pn(0,K)+"~" J ( l - x  (x ,K)  exp[F_(x -0)Idx (2.3) 
' 2 e,,.\ 

Below, we shall be guided by experimental shock adiabatic curves. For many media, these curves are 
approximated by a linear relation between the wave velocity D and the mass velocity u in the laboratory 
system of coordinates [5] 

D = D O + ;Lu =~ Pu = D2oOIV-( 1 + kO) 2 (2.4) 

With condition.~ (2.2), the isentropic equation (2.3) takes the form (2.5), and, when it is substituted 
into integral (1.2), we obtain an equation for the deformation 0. = 1 - V./V at the stagnation point. 
We now present the final form of the system of relations for finding the required quantities P., V. and 
the pressure coefficient Ce 

- I  2 -2 
P.  = Ps(e.) = Pu(O, I/_) - r_V_ D~I(e., 0.) ,  Ct, = 2V_U_ P. 

0 . (2-  0.)(1 - ~.0.) -2-  2[i + F_(! - 0.)]/(0., 0÷) = M 2 (2.5) 

e. ~ 2 o ~  
I =  o.l exp[F-(x-O)l (! _ kx)2 

The temperatua:e at the stagnation point is calculated by summing its increments on the front and 
along the isentropic curve. The discontinuity on the front is found by integrating an equation which is 
derived from the l~hermodynamic identity 

dTIT = dSIcv - V d W V  (2.6) 

where S is the entropy, cv is the specific heat capacity at a constant volume, and the equation for the 
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entropy along the shock adiabatic curve [5] is 

2TdS = (V_ - V)dP + PdV (2.7) 

The  relation between the temperatures  7"+ and T. is found by integrating Eq. (2.6) when dS = O. A s  
a result, we obtain 

7"+ = T_exp(F_0+) + D~cvll(O+, 0), T, = T+exp[F_(0, - 0+)] (2.8) 

A dense medium. As an example of a dense geological medium (V0 = V_) we shall consider clay with a moisture 
content w = 4% and with the parameters [6--8] 

D O = 1600 m/s, )~ = 1.47, 1/V_ = 2.15 x 103 kg/m 3, cv = 980 J/kg K, F0 = 0.9 

The last two values have been corrected using the usual additive approach for calculating mixtures. The values of 
the required quantities, calculated using Eqs (2.4), (2.5) and (2.8) are shown in Table 1. The temperature increments 
AT+ = T+ - T_ and AT. = T. - T_ are indicated and pressures are shown in GPa. A comparative analysis is given 
below. 

A porous medium. Dry sand is a porous geological medium with a relatively low velocity of propagation of 
perturbations Do. Experimental data for the shock adiabatic curve of one type of sand (sandA) and the values of 
Cv and F0 are presented in [7-9] 

Do = 500 m/s, X = 2.4, I/V_ = 1.66 x 103 kg/m 3, l i f  o = 2.65 x 103 kg/m 3 

cv =790J /kgK,  F _ = I  ( 6 9 2 < D < 2 9 0 0 m / s ,  1 . 4 < M < 5 . 8 ,  0 . 1 < P H  < 5 G P a )  

Breakdown of the sand particles and filling of the pores [9] occurs in the indicated range of amplitudes of the 
shock wave. A further loading and irreversible reduction in the porosity occur behind the front. This process cannot 
be considered as being isentropic. The construction of the exact equation for the process is made difficult by the 
lack of data on the compressibility of sand at high pressures, deformation rates and temperatures. We shall therefore 
confine ourselves to estimating the upper and lower limits of the required quantities. 

Thus, the shock wave adiabatic curve (2.4) can be used as an equation for the process of rapid loading. Actually, 
the real discontinuity in the sand is spread out over a width of several characteristic dimensions of the microstructure, 
and, in the case when the body has relatively small transverse dimensions, it can be assumed that the shock loading 
continues along to point B, only in two stages. It then follows that one puts I ----- 0 in the computational equation 
(2.5). The equation for 0. becomes quadratic, and the required root is found using the formula 

0. --(I+M 2 - 3/I +(2- 2k-I )M 2 ) = l(~k.M 2 +I) 

The pressure P. is found next using the equation of the shock adiabatic curve (2.4), and we shall calculate the 
temperature T. using the first formula of (2.8), as is also done for T+ having replaced 0+ by 0.. It is obvious here 
that the thermal part of the internal energy, the production of entropy and the temperature will be too high while 
we obtain a lower bound in the case of the mechanical characteristics P., p. = V_./V. (the relative density) and 
Ce. The opposite estimates are obtained by starting from the approximation of the isentropic curve (2.5)-(2.8). 
Note that the calculations give a very narrow range for the true values of the mechanical parameters while the 
width of the range for the temperature T. increases considerably with the amplitude of the shock wave. 

Numerical values of the quantifies are shown in "Ihble I where, when necessary, they are labelled with the subscripts 
i (an isentropic curve) and a (an adiabatic curve). The results for sand B, which is artificially prepared quartz crumb 
(the ct-phase), are also presented there. The parameters of its shock adiabatic curve have been measured over a 
larger range of velocities and pressures [10] 

Do = 1250 m/s, ~. = 1.375, l/V_ = 1.75 x 103 kg/m 3, l/Vo = 2.65 x 103 kg/m 3 

Cv = 790 J/kg K, F_ = 1 (2.1 < D < 4.14 kin/s, 1.68 < M < 3.3, 2.28 < P• < 15.4 GPa) 

The calculated "isentropic" and "adiabatic" values for both types of sand conform to the inequalities 

p.a<p. i ,  P,a < P,i, Cpa < Cei, T.a > T.i 

The calculations show that the maximum pressures P.a and P*i are close in value. When M < 5, the relative 
difference did not exceed 11%. The temperature increments are not too different only for small shock wave 
amplitudes. It is natural to assume that the true values lie within the ranges and are initially closer to the "adiabatic" 
values, and must then approach the results of the calculation using the isentropic curve as the Mach number increases 
and the porosity on the wave front is depleted. 
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Comparison of the results for the different types of sands and clay for the same flow velocity shows the 
closeness of the pressure values (Poa = 6.3, 7.0 and 8.1 GPa when U_ ~ 2.5 kin/s, respectively). Close temperature 
increments are only observed in the case of the sands. In the case of the clay, they are considerably smaller: 
T,i = 732, 679 and 400 K. Note the low sensitivity of the calculated quantities to variation of the Griineisen 
coefficient. For instance, an increase in the parameter F0 by a factor of 11/2 led to only a 10% increase in the 
temperature T, (clay) while the values of P, remained practically unchanged. This is important, since this coefficient 
is found indirectly from experiments and is of low accuracy. 

The degenerate case ofaporous medium (Do = 0). We know that, for a certain value of the porosity (-0.5 in the 
case of pliant metals [5]), the characteristic velocity Do vanishes and this degenerate case should be considered 
separately. When D = U_ = ~u, the relations on the front (2.4) and (2.8) take the form 

I,  e+u_ 2 U 2 U_ 2 U._ 2 
0+=~- P+= V_ =~.V_' T+=--~.~+T,2~ c v E+= 2~L2 

The density is constant on the front and equal to the density of the continuous phase under normal condi- 
tions (1I+ = V0). In other words, the so-called "snow plough" model is possible. By postulating that the 
loading process is isentropie and an equation of state for the continuous phase of the form (2.2) with a normal 
shock adiabatic curve D = D1 + Au and following the procedure similar to that described in Section 2, we obtain 
the equation of the isentropic curve behind the shock wave front and the equation for determining the 
deformation 

P,(e) = PH(O, Vo)+ I"+ exp(r00)-  CoV~llh21(e,o) 

A2n? -- r0 Lr0 Vo) I 

At even higher values of the porosity, the magnitude of Do is negative, but then, if the linear law (2.2) remains 
true, the preceding treatment is also valid subject to the condition that M < 0. 

3. T H E  TATE E Q U A T I O N  

Since, above a certain value P > 8 GPa, the static and dynamic adiabatic curves for water start to 
differ, we shall use a corrected Tate equation to describe the motion of a body in water and the 
interpolation formula for the temperature jump [11] 

0, 309(p n - 1) 
PH(P) :  i + 0 - ~ p - - ' l ~  GPa, ATH = 26,3pHPH(pH ), 

V_ 
p = - -  (3.1) 

V 

It is more convenient to use the Tate equation without a correction term in the denominator for 
motions at Mach numbers M < 2. The calculation then reduces to solving the algebraic equation for 
the density in the shock wave and the subsequent calculation of the quantities at the stagnation point 
using the final formulae 

Ill(n_l) ' C 2 nM2(l p~.l)_ n P * _  M 2 (n -1 )  p , =  _ 
- - p + - l ,  - - -  I +  , , + l  

p+ 2p+ n V  

n=7 .3 ,  c_= 150Ore/s, V_= lO-3m3/kg 

(p: - I) 

In calculations at M > 1 using the earlier algorithm (2.4)-(2.8), the parameters k and F 0 were selected 
subject to the condition that P+ and T+ are identical with the values given by (3.1) 

~ .=2,  F o = 0 , 7  ( 0 < M < 2 ) ;  .k=1.9 ;  1.8, F0=0.85  ( M = 2 , 5 ; 3 )  

while the heat capacity coefficient was estimated using the data in [11] as Cv = 3700 J/kg K. The results 
of the calculations are collected together in Table 2. 
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Table 2 

M P+ P. P+, GPa P., GPa AT÷,K AT.,K Cp C:,oC e Cx,, 

0.5 ! 1,10 0 0,30 0 - 1.05 0,86 1.02 
I 1 1,26 0 ! ,33 0 - I, 15 0,95 I, I 
1.5 1,20 1,39 0.84 3.14 41 69 1,24 1.02 
2 1,371 1,49 2.25 5,85 86 107 1.30 1.07 1.2 
2.5 i.46 1.6 4.44 9,51 185 210 1.35 1.11 
3 1,59 1,72 7.50 14.2 324 349 1.40 I. 15 1.25 
3,5 1.73 1.85 11,6 19.9 539 568 1.44 1.18 

If one compares the numerical values for water with the data in Table 1, the following can be noted. 
As a consequence of the difference in the heat capacity of water and clay, there is also a pronounced 
difference in the temperature increments and, at the same flow velocities, they behave in approximately 
the same way as the coefficients cv. Roughly speaking, the ratio of the pressures P. is the same as the 
ratio of the initial densities, and the consolidation of p. is also appreciably higher in the case of the 
clay. 

4. ESTIMATES OF THE DRAG C O E F F I C I E N T  

The pressure coefficient Ce characterizes the effect of the compressibility of the medium and only 
changes slightly ow~r the range of flow velocities considered: 1.135 < Cea < 1.214, 1.5 < M < 5 (sand 
A). In this ease, the extrapolated values of Ce when M = 1 are equal to 0.153, 1.1, 1.15 and 1.2 for 
water, sandA, sandB and the day, respectively, and, when U_ < 3 km/s, the value of G, does not exceed 
1.4 in all cases. It is important that this coefficient determines the upper limit of the coefficient of frontal 
drag Cx which is eqlud to the product of the drag and 2 x V_/U_ 2. This assertion follows from the condition 
P ~< P. on a wetted surface. On the other hand, if the form of the distribution of the pressure P over 
this surface were to be invariant with respect to the Math number, then Cx = C ~ e ,  where Cx0 is the 
value of C~ when M = 0. However, as calculations of the flow of compressible water past cones have 
shown [12], this distribution levels off as the Maeh number increases: P --> P., Cx -~ Cp - O. When M 
= 2-3, the coefficient Ce already gives a poor approximation of the upper value of Cx. We therefore 
conclude that 

C,oCe < Cx < ce (4.1) 

In the case of a disk Cx0 = 0.82 [13], and the interval (4.1) is quite narrow. For instance, the arith- 
metic means from the ends of the interval (4.1) (Cx) = 1/2Ce(Cxo + 1) (Table 2) are identical with the 
results of a numelical experiment C~ [13]. In the case of a sphere Cx0 = 0.44 and (4.1) is a coarse 
estimate. 

5. ESTIMATES OF THE EFFECT OF HEAT CONDUCTION,  VISCOSITY 
AND PLASTICITY 

In the case of a ]Linearly viscous and heat conducting fluid, the equation for the change in the energy 
of the particles is described in the form [14] 

DH = V_a (U:cij)+kVAT, H=Iu2 i +E+PV (5.1) Dt dx i  2 
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, ¢,,u, 
"fii =21](eiJ-3e~iij ), eij =~'t'~-'~-j + dr i , e=ei, (i,j=1,2,3) 

where xi is a Cartesian system of coordinates (X 1 -~- the x-axis), Ui are the components of the velocity 
vector, 11 is the coefficient of viscosity, "cii are the components of the viscous stress tensor and k is the 
thermal conductivity. From the symmetry conditions on the axis r = (x 2 + x2) 1/2 = 0 and the fact that 
there are no rotations about the axis, we obtain for the components which are not identically equal to 
zero 

U r = ~ U r / t ) x = ~ U / O r = ' f r x = O ,  r=O, U = U  I (5.2) 

Next, using (5.2) and the equation of linear heat conduction with the heat capacity at constant pressure 
c., we reduce the energy conservation equation (5.1) for particles on theAB axis in a steady flow to 
tile form 

uOH=4 ( ~ ~)U (~U~21 ~T 
(5.3) 

Equation (5.3) can serve as a basis for calculating the corrections to the zeroth approximation. Firstly, 
we shall study the effect of heat conduction separately. On integrating (5.3) alongAB when q = 0 we 
obtain 

H. - H÷ = ct,(T. - 7"+) (5.4) 

The left-hand side of (5.4) is identical with the left-hand side of (1.2). On evaluating the temperature 
contribution using the perturbation method we arrive at the conclusion that the fight-hand side of (5.4) 
(the perturbation) constitutes about 1% (several percent) of the most significant term of P . V .  in the 
case of the clay (sands). This falls within the limits of the acceptable accuracy. 

We shall now study the effect of viscosity, putting k = 0. With the aim of deriving an analytic estimate, 
we shall specify a certain real shape for the nose section of the body (a hemisphere of radius a) and 
assume that the velocity distribution along AB is not too different from the analogous distribution in 
a flow of an ideal incompressible fluid around a sphere: U = U+(1 - a3/x3), where the x coordinate is 
measured from the centre of the sphere. Actually, this function satisfies the conditions exactly at point 
B and approximately at pointA (by virtue of the assertion concerning the remoteness of the front) and 
it can be assumed that the flow separation, the thin boundary layer and the compressibility do not have 
a significant effect on this distribution. Substituting into (5.3), integrating "in the mean" of the two parts 
of the resulting equality from a up to the coordinate of the front L and comparing the "averaged" 
perturbation (Arl) with the terms from the "zeroth approximation" we obtain the following condition 
for the smallness of the effect of viscosity 

t. 3 7aU+ ( U i ) = 3 i U i ( x ) a . ~ d x =  12flU+V+ ,~lu+2 .-.~q ,~ 
a x 4 7a 2 241/+ 

This estimate is approximate when answering the question as to whether to introduce viscosity 
into the treatment. For example, q - 1 Pa s in the ease of glycerine at a normal temperature and it 
follows from the estimate that a >> 10 -6 m. This estimate is significantly poorer in the case of far less 
viscous fluids or in taking account of warming up, to which, as is well known, the magnitude of q is 
exceedingly sensitive. 

In taking account of plasticity, the normal stress ax must be fixed instead of the pressure. Since an 
experimental adiabatic curve is used, the relations on the front remain the same as before. Behind the 
front, according to the asymptotic approach [2], we assume that plasticity gives a correction to the 
hydrodynamics which is calculated as the following iteration. As before, in order to obtain the order 
of magnitude of the correction, it can be assumed that, in the neighbourhood of the stagnation point 
in the case of a hemisphere, the flow characteristics are close to those which are obtained from the 
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asymptotic solution of the problem of a non-cavitating viscoplastic flow past a sphere [15]. The correction 
to the pressure coefficient will the appear as 

4'~aV-/4 in "~/31~ + ! / AC,, = (5.5) 

where xa is the dy~Lamic yield stress (according to von Mises) and ~t is the shear modulus. 
Judging from experiments [1], the yield stress "ca, which corresponds to the state of the medium behind 

the front, is a parameter of the process which is much less than the dynamic elastic limit calculated 
using measuremellLts of the amplitude of an elastic forerunner and much closer in magnitude to the 
static yield stress, exceeding it by a factor of 1.5-3. It is clear from the structure of (5.5) that the correction 
rapidly decreases ,'is the flow velocity increases. In the case of the clay, the preliminary values of the 
parameters are: x ~ 3 x 106 Pa, Wxa --- 102 and, when M > 1.2, ACe will be < 10 -2. 

In the case of phase transitions, which are revealed, in particular, by breaks in the shock adiabatic 
curves, the D-u relation is partially piecewise-linear and the calculation then becomes slightly more 
difficult. 
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